

1

A Shared Information System Architecture for Integrating Risk
Management Tools: A Case Study

 Shaosong Xu Hoh Peter In Martin S. Feather
 Dept. of Computer Science Dept. of Computer Science Jet Propulsion Laboratory
 Texas A&M University Texas A&M University California Institute of Technology
 College Station, TX 77840 USA College Station, TX 77840 USA 4800 Oak Grove Dr,
 Tel: 1-979-845-5439 Tel: 1-979-845-5439 Pasadena CA 91109
 shaosong_xu@hotmail.com hohin@cs.tamu.edu Tel: 1-818-354-1194
 Martin.S.Feather@Jpl.Nasa.Gov

ABSTRACT
Many organizations would benefit from enterprise-wide,
shared information systems. It is common for these
organizations to have in place a number of smaller
information systems, each of which solves a portion of the
problem. Typically, these smaller systems will have been
developed independently of one another. As a result, they
exhibit many forms of heterogeneity, which pose many
impediments to integration. In this paper, we propose and
justify an architecture suitable for integrating these smaller
systems into a shared information system. The architecture
must, to varying degrees of importance, be flexible,
responsive, space-efficient, scalable, easy to use, and
reliable. The integration effort must also be taken into
account. Illustrations are taken from an ongoing case study
in which two systems that operate on complementary areas
of risk management are being integrated and extended.

Keywords
Software Architecture, Shared Information System, Risk
Management, Tool Integration

1 INTRODUCTION
1.1 Motivation
In many organizations, data is distributed over a multitude
of heterogeneous information systems, and integration of
these systems is a critical success factor to achieve
organization-wide, cooperative missions. However, the
system integration is not easy. Technically, integrating
heterogeneous hardware platforms, operation systems,
database management systems, and programming
languages can be challenging. Conceptually, coordinating
different programming and data models as well as different
understanding and modeling of the same real-world
concepts can be even more challenging [3].

For example, the authors are involved in an ongoing effort
at NASA to integrate and extend two heterogeneous risk
management tools. These tools were developed
independently of one another, and their integration
exemplifies many of the challenges listed above.

The tools in question are: (1) the AskPete tool developed at

NASA Glenn’s Research Center for software development
cost, schedule and risk estimation and planning, and (2) the
DDP tool developed at the Jet Propulsion Laboratory for
life-cycle risk management [2]. Customization of DDP to
software development is underway [1], during which the
integration with AskPete is taking place [4].

1.2 General Characteristics of Tool Integration
While the tools being integrated have many application-
specific aspects, the considerations that are of most
prominent concern for integration are quite general. These
are that the tools to be integrated:

• Were developed independently. As a result, they
exhibit a plethora of differences (e.g., naming,
representation, version control) which would
presumably have been resolved had they been
developed from the start as a unified effort.

• Play a role within the same overall task (in this
case, the risk identification planning and
management).

• Address complementary but related aspects of the
overall task.

• Reflect a substantial development effort to date
(implying that there would be a high cost incurred
to recreate the existing capabilities of one tool
within the implementation of the other).

The integration will involve: 1) data sharing and exchange,
2) control coordination, and 3) the need to facilitate future
integration with additional related tools.

Simultaneously with the integration of these two tools, the
effort also identified the desire to integrate the results of
separate applications of these tools. These could be
applications performed by the same people on the same
project but at different times, by different people on the
same project at the same time, etc. An example from the
NASA setting is to have independent parties apply the tools
to separately assess a project’s risk plan, and compare those
assessments as a part of performing Independent
Verification and Validation (IV&V).

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

2

In the NASA case study, the inter-tool integration and the
inter-use integrations are intertwined. Each of the
individual tools (AskPete and DDP) offers a partial suite of
inter-use capabilities for its own data. However, neither is
complete, and even the union of their individual
capabilities would not be a complete solution, so some
combination of integration and extension is warranted.

In the NASA case study, we have the additional constraint
that both of the individual tools be retained as separate
tools capable of operating stand-alone to address its own
problem area. In other cases there might be no such a
comparable constraint, if, say, the organization was willing
to commit to merging the future development of both tools.
Even in the absence of such a constraint, it might still prove
desirable to continue to keep the two tools’ development
efforts distinct, especially if this can be done so as to
achieve the benefits of integration while avoiding the costs
of a tightly coupled development effort.

Finally, in the NASA case study we have the motivation
and ability to coordinate the future development of the two
tools whose integration is sought. In particular, since each
of the tools has been developed in-house, we have the
ability to adapt and customize them so as to facilitate the
integration process. Again, we think this is a recurring
characteristic of integration in an organizational setting.

1.3 The Approach: Shared Information System

A shared information system is proposed for integrating
tools. Each tool can exchange data using the shared
information system as a mediator. The benefits of using the
shared information system to integrate results from separate
tools could be to provide:

• a “lessons learned” data base
• a repository of corporate knowledge
• data for case-based reasoning
• independent assessment and review services
• trend analysis

The architecture must, to varying degrees of importance, be
flexible, responsive, space-efficient, scalable, easy to use,
and reliable. The integration effort must also be taken into
account. In this paper, we will justify the proposed
architecture in terms of the issues faced during integration,
providing the rationale for the choices we made.
Illustrations are taken from an ongoing case study in which
two systems that operate on complementary areas of risk
management are being integrated and extended.

The remainder of this paper is organized as follows:
Section 2 presents a proposed architecture for the shared
information system, and Section 3 discusses the underlying
rationale to design the proposed architecture. Section 4

describes the lessons learned in this case study. Section 5
summarizes the related work. Section 6 discusses
conclusions.

2 IEESIM: THE PROPOSED ARCHITECTURE
2.1 Overview
Based on the initial study on reference architectures and the
constraints shown in the general characteristics of risk
management tool integration, an architecture for the shared
information system, called Integrated, Extensible,
Exchangeable, Shared Information Mediator (IEESIM), is
proposed. The design goals and capabilities of IEESIM are
to ensure that users of the integrated risk management tool
have:

• Integrated data view derived from individual risk
assessment tools. Users are able to acquire integrated
information by a single query (view) from a shared
database without manually collecting information from
multiple, individual databases of separate risk
assessment tools.

• Extensible Information System to add more
information for risk assessment by easily plugging
additional, third-party tools into a shared database.

• Exchangeable data capability between risk assessment
tools. Risk assessment tools are able to share
information with each other by exchanging data, even
when their data formats differ.

• Shared database management system. The information
system provides the following capabilities of a shared
database: assessing, browsing, adding, deleting, and
updating meta-data and data.

The layered client-server architecture of IEESIM shown in
Figure 1 is proposed to the addressed problems and
constraints presented in Section 1.

Data Format Exchange Layer resolves the heterogeneity of
data format based on eXtensible Markup Language (XML).
The layer migrates the heterogeneity of hardware
platforms, operating system, database management
systems, and programming languages by transforming
proprietary data format into XML through an XML
translator.

Data Schema Integration layer aims at the resolution of the
heterogeneity of data understanding, data modeling and
schema. Using global-to-local or local-to-global mapping
information, heterogeneous local data schema can be
transformed into an integrated, global data schema. In the
client side, the local data are transformed and transferred
into the corresponding global data using local-to-global
mapping relations. In another hands, in the server side, the

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

3

global data are transformed into the local data using global-
to-local mapping information.

View
Manager

XML
Translator

database

GUIserver

API
server

Data
Monitor

Communication
Layer

Mapping
database

Wrapper

data access
control

BrowserHTTP

HTML

General
Users

Communication
Layer

Data Schema
Integration Layer

Data Format
Exchange and
Data Consistency
Layer

GUI
Layer

Application

XML

TCP/IP

XML

IEESIM Server

Shared

Mapping
local to
global

Data
Monitor

Communication
Layer

Mapping
database

View
Manager

Local
database

SQLX
Data

Monitor

Wrapper

DDP

XML
Translator

IEESIM Client 2

Mapping
local to
global

Data
Monitor

Communication
Layer

Mapping
database

View
Manager

Local
database

SQLX
Data

Monitor

Wrapper

AskPete

XML
Translator

IEESIM Client 1

Figure 1. The Proposed IEESIM Architecture

Graphic User Interface Layer is responsible to provide a
general, easy to use interface to assess, browse, add, delete,
and update meta-data and data.

Through Communication Layer, XML-formatted data is
transferred from an IEESIM server to IEESIM clients that
are working with individual risk management tools, and
vice versa.

Data Consistency Layer contains a Data Monitoring
component to maintain data consistency with satisfying the
constraint that both tools be retained as separate tools
capable of operating stand-alone in order to address its own
problem area.

The more detailed mechanism of components shown in
each layer is investigated in Section 3 with issues and
rationale.

3 ISSUES AND ARCHITECTURE RATIONALE
In this section, how design issues for tool integration (such
as Data Format Exchange, Data Schema Integration, and
Data Consistency Maintenance) affect architecture
selection and its consequence are discussed.

3.1 Exchanging Data Format

The different tools in the IEESIM architecture need to
exchange data with one another. Since they are
heterogeneous tools, they do not necessarily share a
common data format, but some translations are required.

One option is to develop many translators between every
pair of tools that need to communicate; Another option is to

employ a universal data exchange format, and to develop
translators per tool to convert the universal data format.

We selected the second option. We used eXtensible
Markup Language (XML) as a universal data exchange
format between heterogeneous tools and IEESIM. In the
first option, the number of the pair-wise translators increase
exponentially. In addition, XML already becomes a
standard data format [5, 7]

3.1.1 XML Data Format Translation
In the NASA case study, we adopted an MS Access
database as the shared database located in the IEESIM
server because the current NASA users of risk management
tools have an MS Access environment. However, we
designed the database API through JDBC:ODBC so that
any relational databases can be migrated without significant
change.

3.1.2 Architectural Issues
An architectural issue on data format exchange is: Where
should the XML translator be located? There are two
alternatives: in the server side, or in both server and client
sides. (Since the server has to have XML translators to
convert incoming XML format into its database format, the
alternative of only in the client side is not viable.)

If the XML translator is only in the server side, every tool
in the client side sends its own formatted data to the server.
The server translates data format of each tool into XML.
The assumption here is that the server has to have all XML
converters that can translate all tool formats. An advantage
of this architecture alternative is a centralized control of
XML converter management. If a data format is changed,
one time update of the corresponding XML converter in the
server side is sufficient. It is not necessary to visit each
client to update the corresponding XML converters for the
changed data format. The disadvantages are possibility of
performance bottleneck on server side due to abundant
XML converting jobs and overhead of managing lots of
XML converters for local formats.

If both client and server have the XML translator, the
bottleneck on the server side can be significantly reduced.
However, it costs to maintain the XML translator when the
XML translator should be changed according to data format
changes because every XML translator distributed in
clients and the server should be updated properly. Another
benefit is localization -- clients take care of their changes
inside clients without considering the situation in the server
side. In only-the-server-side alternative, clients should
check whether the server will support the suitable XML
translator or not before clients send data to the server.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

4

3.2 Integrating Data Schema

The different data schemas inherited from different data
modeling of each tool need to be interchangeable with one
another to communicate between tools, even though the
data formats are compatible. One option is to develop data
schema transformers between every pair of different data
schemas. Another is to employ an integrated data schema
(called "global view"), and develop transformers between
each data schema of each tool (called "local view") and the
global view. Due to the exponentially increasing
complexity of the first option, we chose the second option,
transforming local view into global view.

3.2.1 Mapping between Global View and Local View
The transformers need management of the mapping
relationships between local view and global view. Figure 2
illustrates the view management using one-to-one mapping
in our case study. Two local views of DDP and AskPete are
mapped into a global view in the IEESIM server. For
example, ID and Schedule columns of the "Project" table in
the AskPete database have a one-to-one mapping
relationship (see dot-line) with ID and Schedule columns of
the "Project" table in the SharedDB database.

Figure 2. An illustration of XML schema mapping

There are various implementation methods of
representation and manipulation of these mapping
relationships. One representation method is to transform
XML-formatted local views into an XML-formatted global
view using Extensible Style-sheet Language
Transformations (XSLT), a language for transforming
XML documents into other XML documents. Another
representation method is to store mapping information into
a table in relational database.

We chose the XSLT method because of the XML
flexibility of data schema evolution. View managers shown
in Figure 1 transform the local and global views in XML
using XSLT. A relational database is faster to manipulate
(e.g., select, project, join) data than currently available
XML manipulation tools. To define the mapping
relationships easily, a visualization aid has been developed.

A challenging problem is how to resolve different view

names for the same meaning, inconsistent units, or
semantics among domains. For example, the schedule unit
of DDP (5 months) should be transformed into one of
AskPete (150 days). We defer, however, the detail
discussion of this issue, since the focus of this paper is
architecture and its issues.

3.2.2 Architectural Issues
Like the architecture issues discussed in Section 3.2.1, an
architecture issue on data schema integration is: Where
should the view manager (i.e., data schema transformer) be
located? Three alternatives were discussed as follows:

Only the server has view manager (Option 1). A copy of
the mapping relationships is saved on the server, but not on
the clients. When a client sends the local view data to the
server, a view manager in the server (shown in Figure 1)
transforms it to the global view data. An advantage is,
again, easy management of the mapping relationship
evolution. A disadvantage is performance and reliability
penalty of a single server.

Only clients have view manager (Option 2). Each client has
a copy of the mapping relationships, but not the server.
Before clients send the server data, clients should transform
local-view data into global-view data. When the server
sends global-view data to clients, view managers in clients
transform the global-view data into local-view data before
clients manipulate the data. Due to the localization of
managing mapping relationships, performance can be
improved at a cost of maintenance. As duplicated mapping
relationships are located across the same tools, all copies
should be changed when mapping relationships are
changed (e.g., added, deleted, and modified).

Both the server and client have view manager (Option 3). If
the server and the clients have the view manager, a protocol
of who-do-what-by-when is necessary. The protocol
enables management of the mapping relationships to be
flexible according to situations. Performance monitoring
and control scheme can be used to dynamically adjust
workload of transformation jobs (by scheduling policy). A
drawback of this option is the difficulty of designing the
best protocol. This is the scheme we adopted in the NASA
case study to conduct research on designing a smart view
manager.

3.3 Maintaining Data Consistency
As users change data through tools, data inconsistency
between clients and the shared information system is an
inevitable problem. There are three different types of data
inconsistency: (1) between local tools and their tool
databases, (2) between the tool databases and the shared
database, (3) between the shared database and third-party
applications that are operating based on the shared
database. In the NASA case study, we face the first and the

AskPete
Project

ID Schedule
 …

DDP

ID schedule

SharedDB
Project

Cost ID schedule

 …

Cost

Project

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

5

second inconsistency problems, but need not consider the
third (because no third-party tools are allowed to update
data in the shared database). To maintain data consistency,
the first, difficult task is to detect data change. After data
change is detected, it is easy to update the data through data
format exchange and data schema integration.

There are two architecture alternatives to detection of data
consistency: intrusive and external. In the intrusive
approach, the data monitoring is not necessary because a
data consistency module is embedded inside the
application. No data surveillance to detect data changes is
necessary. Thus, there is no performance penalty. A serious
drawback is that source codes of the tools should be
available and modifiable.

In the external approach, a data monitoring module for data
consistency is an independent component outside the
application as shown in Figure 1. It is a feasible solution if
the application cannot be modifiable or its source codes are
not available. Performance would be the penalty.

The external approach has two algorithms to detect data
change, i.e., polling and trigger, since the data monitor is
located outside of tools as a stand-alone application.

Polling periodically compares data with replica data using a
data change detection algorithm. A naïve implementation
of polling would not be scalable to large amounts of data,
due to the overhead of comparing all data between an
original database and its replica. In such circumstances, a
smart polling algorithm is crucial to deploy this method in
the real world.

Trigger is one of the database management capabilities
used to detect data change based on events in the database.
It is faster than polling since there is no need to compare
data. However, it is not a universal solution because some
databases of tools do not have the trigger capability, or
some tools do not use database, but a file system.

In the NASA case study, the source code of AskPete and
DDP could be changed to add the intrusive form of data
monitoring. However, it is not desirable to do so due to the
stand-alone constraint described in Section 1.2, i.e., the
desire to retain them as stand-alone separate tools. Thus,
we adopted the external approach. We selected a polling
architecture with smart algorithm based on log tables to
reduce performance penalty. When a MS file is duplicated,
several log tables are produced, which store the data
changes. An independent data monitor application
periodically checks the log tables and sends out data
change information to the server for maintaining data
consistency.

4 LESSONS LEARNED
The shared information system approach to tool integration
has the following advantages: (1) it avoids the need to
change the individual tools; (2) it makes for the easy
addition of further tools; and (3) it is straightforward to
develop the shared information system with the proposed
architecture. Disadvantages are (1) a relatively slow
response time to update when compared to what would be
possible with tool-to-tool integration; and (2) it is not
applicable to systems that need to integrate GUI and
controls between tools. These disadvantages imply that this
approach is not good for a system that needs a fast-update
(e.g., stock transaction systems).

There are many architecture tradeoff issues. For example,
data in a shared information system can improve
performance, but may increase the workload for
maintaining data consistency between the shared database
and local database. The overall system requirements should
drive the resolution of these issues.

A decision on a component within the architecture may
affect other components or even the whole architecture. For
example, if we select the MS XML parser, to retain
compatibility we then have to rely on MS techniques for
other components such as view. We should think over
potential mismatches and the need for retaining
compatibility when making these decisions.

Utilization of the shared information system is the ultimate
goal. The shared information system permits the easy
addition of further value added services, and thus promote
utilization.

5 RELATED WORK
Information integration is an active research area, there are
many published papers in literature. Rundensteiner et al.
[8] presented a middleware for integrating and maintaining
a data warehouse over a set of changing information
sources. Their research efforts were focused on how to
resolve the effect of a source schema change on a data
warehouse view. In this paper, the purpose of data
integration is to facilitate tool integration. Users and
applications are able to change the shared database.

Yan et al. [10] presented a data mediator accessing
heterogeneous data using homogenization and integration.
They developed the toolkit called MEA for this purpose,
and described the query modification and optimization
algorithms for query processing efficiency. Their data
homogenization and integration approach was adopted
during our schema integration.

Wijegunaratne et al. [9] applied a federated architecture to
an enterprise data integration project for application
integration. Each application exchanged data through the

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

6

federation layer. There was not a global schema in the
federation layer.

Liu and Vincent [6] proposed an architecture for data
warehouse. They detailed the information flow in the
warehouse system and functions of warehouse components.
The data warehouse is read only.

6 CONCLUSIONS

We analyze general characteristics on tool integration and
propose an architecture (called "IEESIM") for a shared
information system as a means of integrating
heterogeneous tools. The benefits of the architecture are to
provide: (1) an integrated data view; (2) extensibility of the
information system to add additional tools; (3) exchange of
data format between tools through IEESIM; and (4) sharing
useful information among the tools or general users.

Tool integration through a shared information system is not
itself a new approach. However, there has been little focus
on the use of architecture tradeoff analysis to motivate the
use of a shared information system. This paper discusses
the architectural tradeoff issues of the proposed architecture
by comparing architecture design alternatives per identified
major issues of designing the shared information system
such as exchanging data format, integrating data schema,
and maintaining data consistency.

The proposed architecture here can be used as a reference
architecture for developing a shared information system
with the purpose of tool integration. Based on arguments
shown in Section 3, the architecture can be tailored and
customized according to specific requirements or
constraints in a domain.

We are going to test performance, availability, and
difficulty with specific measurement (e.g., response time as
performance, Mean Time To Failure (MTTF) as
availability, design schedule and time as difficulty) for each
of the architecture alternatives presented in Section 3.

ACKNOWLEDGEMENTS

Funding from NASA JPL under the contract C00-00443
supported the first two authors. The third author’s research
described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of
Technology.

The authors thank Tim Kurtz, John Kelly, Tim Menzies
and Martha Wetherholt for their cooperation in this project.

REFERENCES

[1] Cornford, S.L., Feather, Martin S., Kelly, J.C., T.W.,
Larson, Sigal, B., and Kiper, J.: Design and
Development Assessment. Proceedings of the 10th
International Workshop on Software Specification and
Design, San Diego, California: 105-114, November
2000.

[2] Feather, Martin S., Cornford, Steven L. and Gibbel,
Mark: Scalable Mechanisms for Requirements
Interaction Management. In Proc. Int’l Conf. On
Requirements Engineering, pages 119-129, 2000.

[3] Hasselbring, Wilhelm: Information System Integration.
Communications of the ACM 43, 6 (June, 00), 33-38

[4] Kurtz, Tim. & Feather, Martin S.: Putting it All
Together: Software Planning, Estimating and
Assessment for a Successful Project. In Proceedings of
4th International Software & Internet Quality Week
Conference, Brussels, Belgium, Nov 2000.

[5] Lear, Anne C.: XML seen as Integral to Application
Integration. IT Pro, September | October 1999

[6] Liu, Jixue and Vincent, Millist: An architecture for
data warehouse systems. TENCON '98. 1998 IEEE
Region 10 International Conference on Global
Connectivity in Energy, Computer, Communication
and Control. Volume 1, Page(s): 107 –110, 1998.

[7] Ramanujan, Anupama and Roy, Jaideep Roy: XML:
Data’s Universal Language. IT Pro, May | June 2000

[8] Rundensteiner, Elke A., Koeller, Andreas and Zhang,
Xin: Maintaining Data Warehouses over Changing
Information Sources. Communications of the ACM,
June 2000, Vol. 43, No. 6

[9] Wijegunaratne, I., Fernandez, G. and Valtoudis, J: A
federated architecture for enterprise data integration.
Software Engineering Conference, Australian, 2000,
Page(s): 159 –167

[10] Yan, Ling Ling; Ozsu, M.T., Liu, Lin: Cooperative
Information Systems, COOPIS '97, Page(s): 130 –139,
1997.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

